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A method is presented for obtaining the matrices for the single-valued irreducible representations of any 
space group. Although the method is designed for computer handling of all algebraic steps, it may be 
easily applied for hand calculations. The procedure is based on the reduction of representations of a 
space group of the wave vector k induced by the irreducible representations of its invariant subgroup of 
index 2 or 3. For almost all space groups only the irreducible representations of a cyclic point group, 
i.e. the nth roots of unity for a generator of the group, are needed. Cubic space groups, for k values 
corresponding to high-symmetry points on the Brillouin zone boundary, are discussed in detail. 

Problems in solid-state physics are greatly simplified 
by group-theoretical methods which require a knowl- 
edge of the irreducible representations of space groups. 
Although in many applications only the characters of 
the representations are necessary, the matrices are 
usually needed for numerical calculations. This is 
quite evident for space-group representations of high 
dimensionality, up to 6 for high-symmetry groups, or 
when only the identity element has a non-zero char- 
acter. 

Tables for all possible irreducible representations 
(hereafter 'reps' for short) of space groups have been 
published by several authors (Faddeyev, 1961; Kova- 
lev, 1961; Hurley, 1966; Miller & Love, 1967; Zak, 
Casher, Gltick & Gur, 1969; Bradley & Cracknell, 
1972). Some of these tables are incomplete or contain 
only the characters, but it is generally true that the 
reps of any space group are now available with little 
algebraic effort. However for numerical computations 
it is much more convenient to have a simple method, 
ready to be applied as a routine in a computer pro- 
gram, which gives the matrices of the reps for any 
space group and for any value of the wave vector k. 
Such a need has already arisen in the literature (Worl- 
ton & Warren, 1972) in order to reduce the amount 
of input data, and possible errors, connected with 
group-theoretical analysis of crystal vibrations. 

In this paper a method is presented for obtaining 
the single-valued reps of any space group, having in 
mind the possibilities of a digital computer for handling 
all the necessary algebraic steps. The procedure in- 
volves rather tedious computations for high-symmetry 
space groups of the cubic system. The reps for these 
space groups will be discussed in detail, in order to 
provide a procedure suitable also for hand calcula- 
tions. To ease the comprehension of this paper, an 
effort has been made to avoid a highly sophisticated 
group-theoretical language in discussing the method. 
A knowledge of the general theory of space group 
representations is however assumed as presented, for 

instance, in Koster's (1957) review article or in the 
book by Lyubarskii (1960). 

1. Introduction 

A brief introduction, mainly intended to explain the 
notation used in this paper, is given here for con- 
venience of the reader. For a complete treatment of 
the general theory of space groups reference is made 
to the classical work of Seitz (1934, 1935, 1936). 

Using a notation first introduced by Seitz, the most 
general form for an element of a space group G is 

{~lv(~) + R.} 

where a is a rotational element, v(e) is a fractional 
translation associated with it and R, is a translation 
of the lattice. In terms of a basis 

t=[ t l  tz t3] , 

where tl, t2 and t3 are unit translational vectors of the 
direct lattice, R, is given by 

R,=nltl+n2t2+n3t3 ( n s , n 2 , n 3 = 0 , _ + l , + 2 , . . . ) .  

In dealing with space-group elements it will be con- 
venient to identify v(a) giving its three fractional com- 
ponents relative to the basis t. These three components 
depend on where the origin of the coordinate system 
in G is taken. If {~lv(~)} is a space-group element 
written for a given origin of the coordinate system, 
then it becomes 

{~1"7(~)}: {gla)-~{~lv(~)}  {g la)  (1.1) 

when the origin is translated by a vector a. According 
to (1.1) v(a) can be formally decomposed into two 
parts: a first component, v ~ (c 0, is part of the definition 
of a space-group element; a second component, v±(a), 
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depends on the choice of origin and may be put equal 
to zero if the origin is properly chosen. This statement 
will be clearer after the following discussion, based on 
a treatment given by Seitz (1935). 

For a given {~lv(a)} let T(c0 be a matrix defined by 

~t=tT(~) .  

T(~) can be reduced into diagonal form by a transfor- 
mation 

S -  ~T(a)S = N 

the problem of obtaining the reps of the space group 
of k, G(k). Given a k=k~ chosen from the possible 
arms of the star of k, the rotational parts of the ele- 
ments in G(k) are such that 

~zk = k + K,, 

where K, is a translation in reciprocal space, 
K~, = m~b~ + mzb2 + m3b3 (ml, m2, m3 = 0, + 1, + 2 , . . . ) ,  
and b~, b2, ba are unit translational vectors of the recip- 
rocal space defined by the relations 

where S is a 3 x 3 matrix of the eigenvectors of T(a), 
and N is a diagonal matrix of the eigenvalues v~ = + 1, 
Vz=V3. The transformation is possible because the 
matrices T(a) form a 3 x 3 representation of the point 
group whose elements are the rotational parts ~. Ac- 
cording to a fundamental theorem of group theory 
(Wigner, 1959) a representation can always be trans- 
formed into a unitary one. Then a given unitary 
matrix T(a) can be brought into diagonal form with 
eigenvalues of modulus 1 of the kind listed above. 

If s~, s2, s3 are eigenvectors of T(~), v(c 0 in this new 
basis has components 

v(~) = v~s, + v;s~ + v;s~ (1.2) 

obtained from the components v~, v2, v3 in the basis t 
by the transformation 

v; = S - 1  v2 
v3 IV31 • 

In (1.2) the components of eigenvectors whose as- 
sociated eigenvalues are v= +1 and v-¢ +1 define, 
respectively, two vectors vH (~) and v±(c0 such that 

v(~) = v ,,(~) + vl(~)  
av,, (~) = v l, (e) (1.3) 

v,,(~) * v±(~) = 0 .  

Any single v(e) can then be uniquely decomposed ac- 
cording to (1.3). v~(e) is different from zero only in 
two cases: {air(e)} represents a screw axis and vt,(e) 
is the component of v(e) in the direction of the axis; 
{ely(e0} represents a glide plane and v t, (~) is the com- 
ponent of v(e) lying in the plane. Once v,(a) and 
v±(~) are found, a vector a may be determined such that 

{E[a}-l{~lv(c0} {Ela} = {~Jv,,(~)} (1.4) 

where a must obey the condition 

[ E -  T(~)la=v.(~).  

It is well known (Koster, 1957; Lyubarskii, 1960) 
that the problem of finding the reps of a space group 
G associated with a given wave vector k reduces to 

b~" tj = ~t~. (1.5) 

In what follows k is identified by its three fractional 
components in terms of b unit vectors. G(k) can be 
decomposed into g cosets of its invariant subgroup R 
of the pure translations {E]R,} 

6(k)=R+{o~21v(o:2)}R+... +{%lv(%)}R (1.6) 

where {cqlv(cq)} is a representative of the ith coset. 
These coset representatives do not, in general, form 
a group since 

{~,lv(~3) {~jlv(~j)} = {EIR,} {v.~lv(~t)} (1.7) 

where ~,~ = 0h and R, = atv(aj) + v(al) - v(al). The ele- 
ment on the right-hand side of (1.7) is not one of the 
coset representatives, and in this sense they do not 
form a group, unless Rn = (0, 0, 0) for all possible prod- 
ucts. In this case G(k) is a symmorphic space group, 
that is v(a)= (0, 0, 0) for all e's, and its reps are simply 
related to those of ordinary point groups as explained 
by Koster (1957). In any case the elements of the factor 
group G(k)/R do form a group isomorphous with the 
point group G0(k) of order g containing only the rota- 
tional parts of the elements in G(k). Tables for the 
reps of G(k) are usually given for the coset represen- 
tatives only since, if 

I)k({~,lv(~,)}) 

is a matrix associated with the ith coset representative 
in G(k), then the matrix for any element {etlv(el)+ Rn} 
is simply written as 

exp ( -  2nik .  Rn)Dk({~lv(~3}). 

The quantity 2n is required because of the definition 
(1.5) of the b vectors; it will be omitted from now on 
although always implied in the exponential. The minus 
sign in the exponent is necessary (Altmann & Crack- 
nell, 1965) in order to be consistent with the multiplica- 
tion rule of Seitz's operators. 

2. Non-cubic space groups 

It is well known that every space group contains an 
invariant subgroup of index 2 or 3. In this section we 
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will discuss space groups containing an invariant sub- 
group G'(k) of index 2. Space groups containing an 
invariant subgroup of index 3 will be dealt with in 
the next section. 

Let us decompose G(k) as 

G(k)=G'(k)+{o~lv(oO}G'(k) (2.1) 

where ~ = E  and {c~lv(~)} does not belong to G'(k). 
The reps of G (k) can be simply derived from those of 
G'(k) using an induction method very similar to that 
presented by Zak (1960). Let {fl~lv(fl~)} be one of the 
g '  coset representatives of G'(k), with respect to the 
pure translational group R, and let 

D~)((fl, lv(fl,)}) 

be a matrix associated with it in the j th  rep of G'(k) 
of dimensionality lj. If ~0 is a function defined in the 
space operated on by the operators associated with the 
elements of G(k), then 

o( (~,lv(~,) })~o 

will be a new function formed by operation with the 
operator O({flilv(fli)}) associated with {fl~lv(fli)}. For 
the rep DC~ ~ of G'(k) lj symmetrized functions can be 
written as 

c/ , .= ~ D,~>({fl,,lv(fln)})*. O({flhlv(~h)))¢0 • (2.2) 
h = l  

The dot in q~. remind us that a basis 

~)1, tl)2, " ' ' ,  ( ~ 6  

for the j th  rep of G'(k) was obtained using a given 
column of D~ ) in the projection operator and it will 
be omitted from now on. By acting on the lj functions 
(2.2) with the operator O({c~]v(~)}), a set of lj new 
fanctions are defined as 

~v = O({Tlv(e) })~v. (2.3) 

The functions 7~ are linearly independent among 
themselves; any assumption contrary to this would 
imply a linear dependence among the q~'s, in contrast 
to their definition as a basis for a rep of G'(k). The 
transformation properties of these functions will now 
be discussed. From the definition (2.2) it is obvious that 

/ff 
O((fl, lv(fl,)})qs~= ~ DC~'({fl, lv(fl,)})u~,. (2.4) 

/ . t=l 

Next, if ~flic~ =tim, 
~ e 

O({fldv(fl,))) ~v=co, ~ DCkJ'((flmlV(fl,,))),~, 
g = l  

coi=exp { -  ik " [fl,v(oO + v(fl,)-c~v(flm)- V(CO] } . (2.5) 

Equation (2.3) through (2.5) and the following equa- 
tion 

o({~ lv (~)} )  ~u~: 0q, v 

0=exp  { - ik - [~v(~)  +v(c0]} (2.6) 

define a 21j × 21j representation Du of G(k), induced 
by a rep DC~ ) of G'(k), whose basis is 

q'l, q'2 . . . .  ' ~ 6 '  ~ul, ~ u 2 , . . . ,  ~u 6 .  

The matrices for this representation are 

{/~,lv(,e,)} {~lv(~)} 
DC~)({fl, lv(fl,)}) 0 0 0E 

0 o~,DC~)({flmlv(flm))) [E o 

where E is the lj × lj identity matrix. A simple similarity 
transformation leads to a more convenient form for 
Dk, namely 

{,8,1v(/~,)} {~lv(~)) 
o'~'({/~,lv(/~,)}) o . I ,~ o E I 0 ¢o~DC~>({E.Iv(E,,)})l E 0 I 

(2.7) 

where r/=exp { - ik/2.  [~v(~) + v(7)]}, fl,,, and COl are de- 
fined in (2.5). According to Schur's lemma the repre- 
sentation (2.7) is reducible if a matrix A # cE (c = con- 
stant) exists which commutes with all the matrices of 
the representation. For our purposes it is convenient 
to analyze the structure of an Hermitian matrix H =  
A+A* which commutes with all the matrices in (2.7). 
Since DC~ ) is irreducible and H must commute with 
the matrix representing {~lv(~)} in (2.7), it can be 
written as 

" =  

where U is a lj x lj Hermitian matrix, E is the identity 
matrix with the same dimension and ci is a constant. 

If U = 0  the representation (2.7) is irreducible and 
forms a rep of G (k) of dimensionality 21j. The matrices 
representing G'(k) in Dk form a representation, sub- 
duced from Dk by G'(k) in the language of group 
theory, obviously reducible into two non-equivalent, 
conjugate reps of G'(k) with dimensionality lj. That 
is, each pair of lj x / j  reps of G'(k), conjugate with 
respect to G(k), induce one rep of G(k) of dimen- 
sionality 21j. 

If U # 0  it can be diagonalized by a unitary trans- 
formation X, and the unitary matrix in block form 

w I x _x I 
will reduce H to diagonal form giving /j-fold degen- 
erate eigenvalues. A transformation, obtained from 
(2.9) after ordering the eigenvalues and eigenvectors 



N. NETO 467 

of H, reduces the representation (2.7) into block- 
diagonal form, each block of dimensions lj x lj. The 
two blocks correspond to two non-equivalent reps of 
G(k), derived from a self-conjugate rep DC~ ) of its in- 
variant subgroup of index 2. 

These conclusions lead to a particularly simple result 
when {e[v(~)} in (2.1) stands for the inversion element 
{/Iv(l)}. In what follows G'(k) is the invariant sub- 
group of index 2 not containing the inversion and a 
representation of G(k) is given by 

{ fl, lv(fl,) } {/Iv(l)} 
DC~)({fl, lv(fl,)}) 0 ... 0 _+ D(~)({,e, lv(/~3t)l [0  E[ 

(2.10) 

co~ = _+ 1, see (2.7), derives from the assumption that 
I e G0(k); k and - k  are then equivalent up to a trans- 
lation of the reciprocal lattice and this is possible only 
if k has components 0 or ½. 

Since G0(k) is at most of order 24, lj cannot exceed 
4 according to a general dimensionality theorem (Hur- 
ley, 1966). However, as will be shown in the next sec- 
tion, no rep of dimensionality 4 exists if G0(k)= Oh, 
the full octahedral group in the Schoenflies notation. 
In this case G(k) has reps of dimensionality /1<6; 
since lj = lj or 2/j, as shown above, the dimensionality 
of the reps of G'(k) cannot exceed lj = 3. 

It is now quite evident that, if the plus sign always 
holds in (2.10), X = E  in (2.9) and the representation 
of G(k) reduces to 

{/~,lv(/~,)} 
DC6)({0fl, lv(/~3} ) 0 

D~)({fl, lv(fl,)}) 

{Xlv(O} 
]E 2E0 .(2"11) 

Each rep of G'(k) is self-conjugate and produces two 
non-equivalent reps of G (k) with the same dimension: 
an 'even' and an 'odd' rep with respect to the inversion. 

If the minus sign applies in (2.10) for some {flllv(fl3}, 
the coset representatives in G'(k) split into two sets 
g~, g2, . . .  and ?,~, )'2, . . .  whose transformation prop- 
erties are 

/ff 

/t=l 

/ f  

0(7,) ~v = - ~ D~)(?,),v ~ , -  
/a=l 

(2.12) 

All coset representatives of the kind 6 define an in- 
variant subgroup S(k) of G'(k) of index 2. This can 
easily be seen by checking the multiplication properties 
of the matrices in the representation subduced by 
G'(k) from (2.10). If the representation Dk is now 
reducible, a U matrix exists such that 

Dc~)(6,)U = UDC~)(g,) (2.13) 

D~'(y,)U = - UDC~)(?,) (2.14) 

for all 6's and ?'s. Condition (2.14) implies that 

det [DC~)(),,)] =det  [-DC~)(?~)] • 

If lj is odd this requirement is satisfied only if 
det [DC~)(),t)] = 0 which is impossible since DC~ ) is a rep 
of G'(k). Therefore, when lj is odd and the minus sign 
applies in (2.10) for some {fl~lv(fl3}, the induced rep- 
resentation is already a rep of G(k). 

For lj even, and only l j = 2  may occur, if the rep- 
resentation (2.10) is reducible the U matrix and all 
DC~)(?)'s have a zero character because of (2.14). From 
(2.13), this U matrix, different from cE, commutes with 
all the matrices subduced from D~ ) by a subgroup 
S(k). This means that all DC~)(6)'s can be simultaneously 
brought to diagonal form. The possibility for all 
DC~(6)'s to be reduced to the following diagonal form 

D~)(3~)=ci E 

must be ruled out. Otherwise, S(k) being an invariant 
subgroup of index 2 of G'(k), DC~ ~ could be reduced 
into two one-dimensional reps, contrary to the as- 
sumption that l j --2.  

Therefore, if all cosets representative in G'(k) of the 
kind 3 are represented by diagonal matrices in DC~ ), 
a suitable U matrix is 

and every DC~)(?~) has the structure 

0 exp(iO)] 
+ exp ( -  iO) 

On the other hand a different choice of basis functions 
in DC~ ) could lead to a representation, subduced by 
S(k), which is not a diagonal one. In this case the H 
matrix in (2.8) has a block 

In any case the representation (2.10) can be reduced 
to block-diagonal form through two consecutive sim- 
ilarity transformations carried out using first a matrix 

l0 
and then a matrix (2.9) where X =  E. The final result is 

{flil v(fl,)} {Ilv(I)} 
0 DC~)( { flo,lV(fl,) })DC#( {flilv(flz) } ) UO - U I0 (2.17) 

where U is a matrix (2.15) or (2.16). The two reps of 
G(k) are not equivalent; should they be equivalent, a 
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matrix would exist which is equal to cE since it com- 
mutes with D~ ) but has a zero character in order to 
transform U into - U .  

In conclusion, the following procedure may be used 
to produce all the reps of G(k) once the reps of G'(k), 
the invariant subgroup of index 2 not containing the 
inversion, are known. The coset representatives 
{flilv(fli)} in G'(k) are classified according to the sign 
of exp ( -  ik .  R,) where R, = 2v(fli) +fliv(1) - v(I). One 
of the two following possibilities arises: 

(a) exp ( - i k .  R,)> 0 for all {flilv(fl~)} - the reps of 
G'(k) are self-conjugate and each of them produces two 
reps of G(k) as shown in (2.11). 

(b) exp ( - i k .  R,)< 0 for some {fl~lv(fli)} - all coset 
representatives such that exp ( - i k .  R,)> 0 define an 
invariant subgroup S(k) of index 2 of G'(k). Reps of 
G'(k) with dimensionality 1 or 3 always occur in pairs 
of conjugate reps, each pair easily recognized by the 
following rule: each coset representative in S(k) has 
the same character in the two reps, any other coset 
representative showing characters of equal magnitude 
but opposite sign. Each pair of reps produces one rep 
of G(k) with dimensionality 21j as shown in (2.10). 
The same conclusion applies for lj = 2 if a pair of con- 
jugate reps exists. If this is not the case, each rep of 
G'(k) with dimensionality 2 produces two reps (2.17) 
of G(k). The U matrix in (2.17) is given by (2.15) if 
S(k) subduces a diagonal representation from D(~ ~, 
otherwise the appropriate U matrix is given by 
(2.16). 

It is now possible to simplify the process of obtain- 
ing the reps of any space group since only groups of 
k not containing the inversion need to be considered. 
The symbol G(k) will be reserved for such space groups 
from now on. The above mentioned procedure will be 
applied as a final step if G(k) is actually a subgroup 
of a larger group (containing the inversion). 

As can be verified by inspection, almost all G(k)'s 
contain a cyclic invariant subgroup of index 2, with 
the exception of space groups belonging to the cubic 
system, simple and body-centred lattices, for values 
o f k  (½,1 1 I ! = (~,,~, ¼). This last case ex- z,~) or k =  will be 
plicitly considered in the last section. Within these 
limits the usual induction method can be applied to 
G(k), decomposed as in (2.1), bearing in mind that 
now G'(k) is a cyclic invariant subgroup of index 2. 
The advantage of this procedure lies in the fact that 
it is very simple to write down the reps of a cyclic 
space group. 

Let us first assume that the origin of the coordinate 
system in G coincides with the point about which all 
rotations in G'(k) are defined. That is, if {fl~lv(flt)} is 
any of the g '  coset representatives in G'(k), v(fl~)= 
v,(fl~) for all fl's [see (1.3)]. In this simple case the 
multiplier reps of G'(k) coincide (Lyubarskii, 1960) 
with the ordinary point group reps of Go(k), which 
means 

OCJu)((fl, lv(fl,)})=exp [ - i k .  v(fl,)lDCl)(fl,) (2.18) 

where DCJ)(fl~) represents fli in the j th rep of the cyclic 
point group G0(k). 

To complete this discussion, the more general case 
of some coset representative in G'(k) such that v~(fl~) 
-¢0 (and exp [ - i k .  v±(fl~)]-¢ 1) must be taken into 
account. If fl is a generator of G0(k), a transformation 

{Ela}-~{fllv(fl)} {Ela}= {fllVii(fl)} (2.19) 

is always possible (see § 1). The same transformation 
on any other coset representative in G'(k) gives 

{Ela}-l{fldv(fl,)} {EIa)={EIRff} {fl, lv,,(fl~)}. (2.20) 

Using (2.18) and the definitions of v,~(fl~) and R, ', con- 
nected with (2.19) and (2.20), the matrices for the j th 
rep of any cyclic space group of k are given by 

D2~({ B, Iv(~,) } ) 
=exp { - i k .  [v,,(fl~)+W,]}D(J~(fli). (2.21) 

The induction method, applied now using the reps 
(2.21) of G'(k), produces the following representation 
of the space group G(k) 

{P, lv(P,)} {~lv(~)} 

(2.22) 

Here bi = D(#({ fl~lv(fli) }) and bm= D(~'({ fimlV(flm) }) are 
just numbers; ft,,, 03~ and r/ are defined in (2.5) and 
(2.7). A representation (2.22) is reducible if b~=ooib,,,: 
two one-dimensional, non-equivalent reps of G(k) are 
obtained as given below 

{/~,lv(/~i)} {~lv(~)} 

(2.23) 

On the other hand a rep of G(k) with dimensionality 
2 is possible only if a pair of rep; of G'(k) exists which 
are conjugate with respect to G(k). Each pair of reps 
induces a rep (2.22) of G(k). 

3. Cubic space groups 

Space groups belonging to the cubic system do not 
possess a cyclic invariant subgroup of index 2 and the 
procedure presented at the end of the previous section 
cannot be applied for high-symmetry points on the 

2", ~) Brillouin zone boundary. This is the case of k=(½, j 1 
for the simple cubic lattice and k =  ~± :L !~ k2,2~21 or k =  
(¼,¼,¼) for the body-centred cubic lattice. Any other 
point in k space defines a G(k) which meets the re- 
quirements of § 2: k=(0,0 ,0)  needs no special con- 
sideration since the reps of G(0) coincide with those of 
an ordinary point group. 

In this section the reps of space groups G(k) show- 
ing tetrahedral or octahedral symmetry will be dis- 
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cussed explicitly. We will first analyze reps of space 
groups Gr(k) whose associated point group is T, the 
group of the 12 rotational elements which take a 
regular tetrahedron into itself. Gr(k) is contained in 
any space group of k considered in this section. There- 
fore, once the reps of all possible Gr(k)'s are obtained, 
it is simple to complete our analysis for all cubic space 
groups. Gr(k) contains an invariant subgroup of index 
3 and the induction method, as presented in {} 2, could 
be extended to cover this case. However, a deeper in- 
sight into the structure of the reps of Gr(k) can be 
gained if the induction method is applied in a slightly 
different manner. Besides, the induction method of 
§ 2 requires first a knowledge of the reps of the in- 
variant subgroup of index 3: that is, two steps would 
be necessary to obtain the reps of Gr(k) rather than 
only one. 

Let C~, (7/2 and Cz k be three binary axes, directed 
along three orthogonal unit vectors i, j and k, defining 
the invariant subgroup of T and let Ca be the generator 
of a cyclic subgroup of order 3 of T. If t is a unit trans- 
lational vector of the lattice in a direction not coin- 
cident with the C3 axis, let us select three unit trans- 
lational vectors h = t ,  tz=C3 t, t3=(Ca)-~t. Or, con- 
versely, let us choose Ca, out of the four possible three- 
fold axes in T, such that it cyclically interchanges the 
three unit translational vectors of the direct lattice. 
If the origin of the coordinates coincides with a point 
about which the rotation C3 is defined, then v(C3)= 
v,(C3). These two conditions on C3 lead to v(C3)= 
(a, a, a) where a is equal to 0, ½ or ~- in order to meet 
the requirement {C3Iv(Ca)}a={EIR,}. In any case a 
suitable origin shift will produce a coset representative 
in Gr(k) written as {C310}. For instance, i r a=½ a trans- 
formation could be applied 

2 --1 2_ 1 1 ( E l 0 ,  ½, -~-} {C313, N, ~- } {E[0,½,~-} 

= {Ell,0,0} {C310,0,0} 

if C3h = t2, C3t2 = t3 and Cata = h. 

The reps of Gr(k) will, of course, depend on the 
particular origin implied here. However, reps for dif- 
ferent origins are simply related. Let {c~lv(~)} be a coset 
representative and D¢~ ) a rep of Gr(k). For any dif- 
ferent choice of origin {c~[v(a)} and {Ca[0} will appear 
as {c~l~(~)} and {C31v(C3)} respectively, and the matrices 
for the new origin are given by the relationship 

D(~)({cqrc(e)})=exp ( - i k .  R~)D~)@xlv(o0}) (3.1) 

where R~ is such that 

{Ela}-'{~l~(~)} {Ela}= {Elan} {~lv(c0} 

and a is defined by the transformation 

(Ela}-'{C31v(C3)} {Ela}= {EIR,,} {C310} 

which is always possible in view of the arguments 
previously given. 

Let fl represent a binary axis in T; then 

C~,0,(C3)--' =,0., 

with fl, ¢flj. The corresponding multiplication of coset 
representatives is 

{C~lO} {/~,Iv(Z,)} {GIO)-'= {EIR,,} {,8.~1v(,8.~)} 

with R,=C3v( f l , ) -v( f l j ) .  Since v(fll) and v(flj) may be 
written as positive fractional translations and 6'3 simply 
interchanges the three unit translations, it must be 
R, = (0, 0, 0). Let then, say, 

{C~lO} {C~lv(C~)} {C~lO}- '={C{Iv(C~)}.  (3.2) 

Using this transformation property it can be shown 
that two possibilities arise when Gr(k) is a non-sym- 
morphic space group of k: 

(1) Ct2 is essentially a screw axis, that is v(C~2) has a 
component different from zero and equal to ai/2; tl = ai 
is a primitive translation (simple cubic lattice) and 

(C~1v(C£))2= (El1,0,0). (3.3) 

(2) C/2 is not a screw axis, v(C/2)=v±(C/z); t =  ai is a 
translation of the lattice but not a unitary one (face- 
centred or body-centred cubic lattices) and 

{ c f,I v(C~) } ' = { El0, 0, 0}.  (3.4) 

The following multiplication rules apply, in general, 
to coset representatives in Gr(k): 

{C~Iv(C~)} 2= {EIR;,} 
{C~Iv(C~)} {C~.Iv(C~)} = {EIR~} {C~[v(C~)} (3.5) 
{C~lv(C~)) {C~]v(C~)) = {EI-(C3)-IR~ 

-R~} (C~Iv(C~)}. 

Here R~ stands for {Ell,0,0} or {El0,0,0} depending 
on the lattice under consideration. The multiplication 
table can be extended by applying the transformation 
(3.2) to (3.5). This table, and the restriction placed on 
the components of the wave vector k by symmetry 
requirements, will be used to obtain the reps of GT(k). 
With ~0 and O({ . . .  }) having the same meaning as in 
§ 2, four basis functions for a representation of Gr(k) 
are defined as 

~,, = ~ + D(J)(C;- bO({ C310})~ 
+ DU)(C3)O({C310)-~)~o 

~ = o( { c'~b,( c'~) ) ) ~, 
~ a =  O({C~ Iv(C~)}) T, (3.6) 
~,= o( { c~ lv( C~ ) }) ~', . 

Du)(C3) and Du)(C~ "1) are numbers representing ele- 
ments of the ordinary cyclic point group C3. The trans- 
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formation properties for these functions, written for 
two generators of Gr(k), are" 

O({ C310 } ) ~1 = Du'(Ca) ~Pt 
Of { C310 } ) ~2 = Du'(Ca) 7J3 
O( { C310 }) I/t 3 = D(J)(C3) I/J 4 
0({ c310 }) ~//4: DU)(C3) ~/-/2 

o({c~lv(Cg})~u,= ~ 
i i o(  { c 21v( C z) } ) 7'z = Q ~u, 

o({ C~lv(C9 }7 % = o- ~,, 
o({ C~lv(C~) } ) ~'/4 = ~0" O'* I//3" 

(3.7) 

where ~ = exp ( -  ik .  R~), cr = exp ( -  ik .  R~), R,] and 
R~ defined in (3.5). 

For  the simple cubic lattice only the point k = t± • x~ k2~ 2' 21 
on the surface of the Brillouin zone shows tetrahedral 
symmetry. For this point Q = - 1  according to (3.3) 
and ~ =  + 1 or - 1. The matrices for a representation 

the point group T: all matrices for elements in T other 
than C3 and (C3) -~ need to be multiplied by o-= + 1 
in order to produce a rep of Gr(k). 

Representations of the kind (3.8) are irreducible in 
real space and can be reduced only if a set of complex 
basis functions is introduced. It is simple to verify 
that the following Hermitian matrix commutes with 
all matrices in (3.8) 

il H = i  0 - a  

a 0 - 
- - a  a 

This matrix has eigenvalues v~ = v z = -  v3 = -v4  and, 
after ordering the eigenvalues, the matrix of the eigen- 

of Gr(k) are vectors is 

Du)(C3) 0 0 0 e+ie* - i  e* ie 
" 1 ~ 0 0 -  [e+ie* - i  e*- ie  7 

0 1  0 o- 

A transformation 

I!°°!1ooO11° 

(3.10) 

(3.8) 

applied to the matrices of the representation gives 

i i {c~lo) {c~lv(c~)} 

li °il Ii-' °ii D(J)(C3)  0 0 (7 1 0 0 

I0 0 0 - 

0 1  0 1 . 

For  the body-centred cubic lattice G(k)conta ins  
GT(k) i f k _ t l  1 t~ _t 1 - ~-, z, ~ / o r  k = (4,¼, 7). For the first of these 
two wave vectors e = 1 and a =  + 1 and the following 
representation of Gr(k) is produced 

i i {Cs lO}  {C~lv(C2)} 

1 0 ~ 0  0 0 0  
D(J)(C3)  0 O" 

1o o o  
0 1  

(3.9) 

For the second value of k two cases are possible: 
Q = 1 and a =  + 1 and a representation (3.9) is obtained; 
~o = 1 and o" = + i and the corresponding representation 
is (3.8). 

Apart  from a factor a, the representation (3.9) coin- 
cides with a representation of the point group T in- 
duced by a representation of its cyclic point group of 
order 3. Therefore the representation (3.9) is reducible 
and the reps of Gr(k) are simply related to those of 

where e = exp (2rti/3). If a transformation (3.10), which 
is unitary after normalization of the eigenvectors, is 
now applied to (3.8), a reduction of the representation 
occurs. The matrix (3.10) is, of course, not unique, the 
reps of Gr(k) being defined up to a similarity transfor- 
mation. Our choice of the eigenvectors (3.10) produces 
two reps of Gr(k), one being the complex conjugate 
of the other if a is real. Using all three reps of the 
cyclic group C3, a reduction of (3.8) yields three non- 
equivalent reps of Gr(k) given by 

{c31o} {c'~lv(C~)) 
a 0 1 ]  

- 1  01 

° F2] D* - iD*  D =  ]/'½ exp 0ri/12) 

I - D* - iO* E = ]/½ exp (rti/4) 

(3.11) 

A summary of these results may be given as follows: 
Let Gr(k)/R be a factor group isomorphous with the 

tetrahedral point group T. If C3 e T is a threefold axis 
which cyclically interchanges the unit translational 
vectors of the direct lattice and C~, C{= C3C~(C3) -1, 
C k are the three binary axes in T, let 

Q exp { - i k .  i i = ICy(C2) + v(Cg]} 
a = e x p  {-ik.[Cizv(C{)+ v(C~)-  v(Ck)]}. 

The following three possibilities arise for the reps 
of at(k):  

(1) ~o=a= 1; the reps of Gr(k) coincide with the reps 
of the point group T. 

(2) ~ = I, o-= - 1 ; the reps of Gr(k) are the reps of 
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T after multiplication by - 1  of all the matrices as- 
sociated with elements other than Ca and (Ca)-1. 

(3) for all other values of 0 and a, GT(k) has three 
2 × 2 reps given in (3.11) for two generators of the 
space group. 

So far our discussion is complete for cubic space 
groups when G(k)= GT(k). If the latter is a subgroup 
(necessarily an invariant subgroup of index 2) of G(k), 
then 

G(k)=Gr(k) + {~zlv(oO)Gr(k) (3.12) 

and a further step is necessary to obtain the reps of 
G(k) itself. It is worth remembering that G(k) stands 
for space groups (or subgroups) of k not containing 
the inversion. At this point the reader could be referred 
to § 2 and our discussion concluded. However we 
prefer to give explicitly the reps of all cubic space 
groups to simplify hand calculations, as mentioned in 
the Introduction, and to prove a statement anticipated 
in the previous section. The discussion is simplified, 
and the reps of G(k) can be explicitly written down, if 

is chosen such that 

ace=E; ¢zCz~=(Ca)-'; ccClzo¢=Ci2. (3.13) 

A general proof of the existence of an element ~, with 
properties (3.13), can be given but it requires a rather 
tedious discussion. It is much simpler to verify (3.13) 
by inspection, since G0(k) here stands only for the two 
point groups O or Td. If the symmetry operations of the 
point group Oh are described by three components of 
a point P '  into which a point P =  (x,y,z) is rotated, let 
Ca and C~ be identified by 

C3=(z,x,y); Ciz=(x,f,2) 

where the bar stands for the minus sign. It follows that 
CJ z = (.~,y, ~) and the element ~ which meets the require- 
ments (3.13) is 

~ =  (g,~,2) if G(k)= O 
o~=(x,z,y) if G(k)= T a .  

Because of the properties (3.13) and the particular 
choice of Ca, it must be 

{C310) {CalO) 
It is now possible to apply the usual induction method 
and obtain a representation of G(k) induced by a rep 
D~ ) of Gr(k) 

{calo} 

{ c' tv(C 9 } } 
D (J) C'~lv C / 0 

(3.14) 

with co=exp ( - i k .  [C~v(oO+v(C~)-o~v(C~z)-v(cz)]} 
and r/= exp { -  ik/2. [c~v(c 0 + v(~)]}. D(~ ) is either very 
simply related to the reps of the point group T or it 
is one of the reps (4.14). In the first case (3.14) reduces 
t o  

i i {C lO) {C21v(c2)} 
0 a 0 

(3.15) 

where D (j) ( . . . )  are matrices in thej th rep of the point 
group T and a = + 1. T has a 3 x 3 rep in which C/z, 
C{ and Cz k form a class of conjugate elements with 
non-zero real character. If o0# 1 in (3.14), then a 6 x 6 
rep of G(k) would be produced, in conflict with the 
dimensionality theorem. For this reason o) must be 
equal to 1 in (3.15). If a = r/= 1, (3.15) is a representa- 
tion of a point group G(k) induced by a rep D (j) of its 
invariant subgroup T. Therefore (3.15) is always re- 
ducible and the reps of G(k) are equal in number and 
dimension to those of either point group O or Td. 
Two factors a and r/provide the only possible distinc- 
tion between space-group and point-group reps. 

Let now consider the second possibility, namely 
when D~ ) in (3.14) is one of the reps (3.11). If D(~)= 
/"1 (or=F2) the representation (3.14) is irreducible 
since no matrix exists which transforms F1({C3[0}) into 
/"1({C3]0)-x), these two matrices having different, non- 
zero characters. This rep can be transformed into a real 
one by a transformation inverse to (3.10); that is, no 
extra degeneracy is produced by time-reversal sym- 
metry, according to Herring's (1937) criterion. 

The third rep /"3 in (3.11) is clearly self-conjugate 
and gives two 2 × 2 reps of G(k). This is also evident 
from the dimensionality theorem, once a 4 x 4 rep of 
G(k) is found. The representation induced by /"a is 
then reducible and the appropriate H matrix in (2.8) 
has a block U of the kind 

1 

Two non-equivalent reps of G(k) are given by 

{C lO) 

io})l 
i i {c21v(C,)) 

(3.17) 

where U is the matrix (3.16) and 1/is defined in (3.14). 
Let (7(k) be a space group of k whose associated 

point group is Go(k)= Oh. We have to prove a state- 
ment given in § 2, namely no rep of dimensionality 4 
exists for (7(k). If G0(k)= Oh only a wave vector k =  
(½,½,½) is allowed. For the body-centred cubic lattice 
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this value of k admits reps of Gr(k) and G(k) equal in 
number and dimension to those of point groups T 
and O respectively. Hence G(k) has only one 2 × 2 rep, 
no 4 × 4 rep and cannot produce a 4 × 4 rep in G(k). 
The same arguments apply to the simple cubic lattice, 
unless c:w± _~ x~ is a non-symmorphic space group. In ~'~ k2, 2, 21 
this case, should G(k) be a subgroup of index 2 of tT(k) 
not containing the inversion, because of the dimen- 
sionality theorem there is only one possibility: the rep 
obtained from/ '1 and/ '2  induces two non-equivalent 
4 × 4 reps, while the reps (3.17) induce a third 4 × 4 
rep of (7(k). As a consequence of the discussion in § 2, 
the elements of G(k) split into two sets according to 
their sign in (2.12); in particular the minus sign applies 
for {c~lv(,)}. However, as can be verified using the 
properties (3.13), this is impossible. The very existence 
of a non-symmorphic space subgroup Gr(k) contra- 
dicts the possibility of having a space group of k show- 
ing the full octahedral symmetry. 

Conclusion 

The single-valued reps of any space group can be 
evaluated using the method discussed in this paper. 
A limited amount of algebraic work is required for 
hand calculations. Except for cubic space groups, only 
the one-dimensional reps of cyclic point groups are 
needed, i.e. the nth roots of unity for a generator 
of the group. The situation is still simple for cubic 
space groups since the procedure of § 3 requires the 
reps of ordinary cubic point groups as given, for in- 
stance, by McWeeny (1963). Once the matrices for 
the generators are obtained, the space-group multipli- 
cation table gives a complete set of matrices for all 
coset representatives. The steps involved for the trans- 
formation (1.4) were discussed in detail because they 
must be followed in a general computer program, al- 
though the transformation is carried out by inspection 
in most cases. 

In a computer program, based on the method given 
here, only one up to three generators of the space 
group need to be defined. It is not convenient to in- 
troduce, as input data, the reps of cubic space groups; 
this could cause systematic errors in the results. It is 
simpler to compute the representations of ordinary 
point groups using the induction method and then 
reduce them through a similarity transformation. In 
order to do this a matrix H must be computed first. 

This matrix, which commutes with the induced repre- 
sentation, is either H = R or H = iC where R and C are, 
respectively, symmetric and skew-symmetric matrices 
whose elements are integers and satisfy simple rela- 
tionships of the kind a--b, a = - b ,  a = - a .  Once a 
matrix H is found it can be diagonalized and the eigen- 
vectors give the required transformation. This pro- 
cedure may also be applied to obtain the reps (3.11) of a 
cubic space group, in order to have a program which 
uses a minimum of input data. 

The author would like to thank Professor S. Califano 
and Professor J. Zak for useful discussions of this 
paper. 
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